

АРТИКУЛ: VR310 VR311

АРТИКУЛ: VR310-F VR310-C

АРТИКУЛ: VR312 VR313 АРТИКУЛ: VR340

АРТИКУЛ: VR342

АРТИКУЛ: VR343

КОМПЛЕКТ ТЕРМОРЕГУЛИРУЮЩИЙ РАДИАТОРНЫЙ

Тип подключения: угловой

Номинальный размер: DN15 для VR310, VR310-F, VR310-C

Номинальный размер: DN20 для VR311

VR310 Присоединение к трубопроводу: ВР трубная цилиндрическая (G)

VR310-F(белый) Присоединение к радиатору: НР трубная коническая (R)

VR310-C(чёрный)Состав:

VR313

VR342

VR343

VR311 – клапан термостатический угловой

– клапан настроечный угловой– головка термостатическая

Тип подключения: прямой

Номинальный размер: DN15 для VR312 Номинальный размер: DN20 для VR313

Номинальный размер: DN20 для VR313
VR312
Присоединение к трубопроводу: BP тру

Присоединение к трубопроводу: ВР трубная цилиндрическая (G)

Присоединение к радиатору: HP трубная коническая (R)

Состав:

клапан термостатический прямой

клапан настроечный прямой

- головка термостатическая

Тип подключения: угловой Номинальный размер: DN15

Присоединение к трубопроводу: ВР трубная цилиндрическая (G)

VR340 Присоединение к радиатору: НР трубная коническая (R)

Состав:

- клапан термостатический с осевым управлением

- клапан настроечный угловой

- головка термостатическая

Тип подключения: угловой Номинальный размер: DN15

Присоединение к трубопроводу: ВР трубная цилиндрическая (G)

Присоединение к радиатору: HP трубная коническая (R)

Состав

- клапан термостатический угловой

головка термостатическая

Тип подключения: прямой

Номинальный размер: DN15

Присоединение к трубопроводу: ВР трубная цилиндрическая (G)

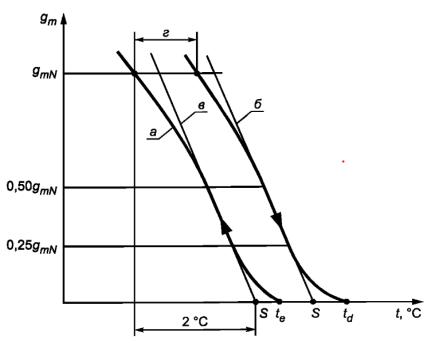
Присоединение к радиатору: HP трубная коническая (R)

Состав:

- клапан термостатический прямой

головка термостатическая

1. НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ.


- 1.1. Терморегулирующие комплекты предназначены для автоматического или ручного регулирования расхода теплоносителя с температурой до 110°С и рабочим давлением до 1,0 МПа включительно, через отопительные приборы водяных систем отопления.
 - 1.2. Состав комплекта:
- -термоголовка жидкостная (термочувствительный элемент)- 1шт;
- -клапан терморегулятора с колпачком ручной регулировки- 1 шт;
- клапан настроечный с заглушкой и прокладкой -1 шт(кроме VR342; VR343);
- -упаковка блистерная 1 шт.
- 1.3. Входящий в состав комплекта настроечный клапан позволяет произвести монтажную настройку (балансировку) прибора водяного отопления для гидравлической увязки его с остальными приборами системы.
 - 1.4. Изделия комплекта соответствуют требованиям стандарта EN 215, часть 1 и ГОСТ 30815-2019.
 - 1.5. Терморегулятор не обеспечивает герметичного перекрытия потока.
- 1.6. Использование терморегуляторов позволяет автоматически поддерживать температуру воздуха в помещениях на заданном уровне с точностью до 1°C.
- 1.7. В качестве рабочей среды, помимо воды, могут использоваться растворы этиленгликоля и пропиленгликоля (до 50%), а также другие жидкости, нейтральные по отношению к материалам клапанов.

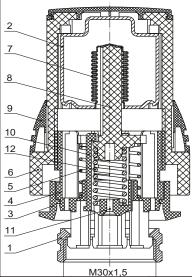
2. ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАСТРОЕЧНОГО КЛАПАНА:

№	Наименование характеристики	Ед. изм.	Значение	Примечание
1	Рабочее давление	МПа	1.0	
2	Пробное давление	МПа	1.5	Давление опрессовки
3	Температура рабочей среды	°C	до +110	
4	Допустимая температура среды окружающей клапаны, °C	°C	+5 +45	
5	Допустимая влажность среды, окружающей клапан	%	от 30 до 80	
6	Максимальный перепад давления на клапане терморегулятора	МПа	0.1	Перепад давления, при котором клапан сохраняет регулировочные свойства
7	Номинальный перепад давления на клапане терморегулятора	МПа	0.01	Перепад давления, при котором производятся построения графиков открытия-закрытия
8	Номинальный расход	кг/час	200	Расход при номинальном перепа- де давления
9	Пропускная способность настроечного клапана			
	клапан открыт на 3.5 оборота	м3/час	1.2	
	клапан открыт на 3 оборота	м³/час	0.79	Расход при перепаде давления 1
	клапан открыт на 2 оборота	м ³ /час	0.43	бар
	клапан открыт на 1 оборот	м ³ /час	0.15	
10	Условная пропускная способность клапана терморегулятора, Kvs	м³/час	1.2	
11	Резьба под термостатическую головку	-	M30x1.5	
12	Присоединительная резьба	-	ГОСТ 6357-81	трубная цилиндрическая (G)
13	Допустимый момент затяжки накидной гайки полусгонов	Нм	не более 25	
14	Допустимый изгибающий момент на корпус клапанов	Нм	не более 120,	По методике п.7.4.3 ГОСТ 30815- 2019

3. ГРАФИКИ ОТКРЫТИЯ И ЗАКРЫТИЯ ТЕРМОСТАТИЧЕСКОГО КЛАПАНА

Условные обозначения по ГОСТ 30815-2019

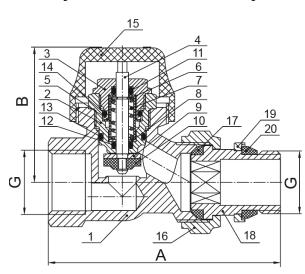
№	Обозначение	Расшифровка обозначения	
	g_{m}	величина потока теплоносителя	
	$g_{m}N$	номинальная величина потока для промежуточного положения рукоятки установки температуры	
	g _m max	максимально достигаемая величина потока при перепаде давлений 0,1 МПа	
	$g_{ m ms}$	величина потока, достигаемая при температуре S-2 °C и перепаде давлений 0,01 МПа при всех возможных положениях рукоятки установки температуры	
	g _{ms} max	величина потока при максимальном положении рукоятки установки температуры	
	g _{ms} min	величина потока при минимальном положении рукоятки регулятора температуры	
	g_{mx1}, g_{mx2}	вспомогательные значения величины потока для измерения времени срабатывания	
	t_{s}	температура датчика, соответствующая g_{ms} , °C	
	t _s max	значение температуры датчика при максимальном положении рукоятки установки температуры, °C	
	t _s min	значение температуры датчика при минимальном положении рукоятки установки температуры, °C	
	t _d или t _e	температура датчика, соответствующая $g_m^{}=0$ на кривой открытия или закрытия	
	ΔΡ	перепад давлений теплоносителя на входе и выходе из регулирующего клапана, МПа	



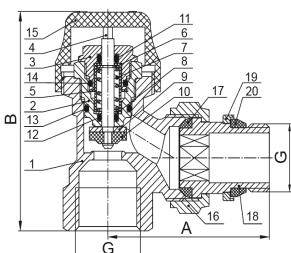
4. ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ТЕРМОРЕГУЛЯТОРОВ:

No	Наименование характеристики	Ед. изм.	Значение	Требования ГОСТ 30815 -2019
1	Расход при S-1	кг/ч	110	не более 70% от номинального
2	Влияние перепада давлений (ΔР>0,01 МПа)	°C	0.3	не более 1
3	Влияние статического давления (изменение давления от 0,01МПа до 1 МПа)	°C	0.8	не более 1
4	Гистерезис	°C	0.6	не более 1
5	Разница температур в точке S и t _d	°C	0.8	не более 0.8
6	Влияние изменения температуры теплоносителя (Δt =30 °C)	°C	0.9	не более 1.5
7	Время срабатывания	МИН	20	не более 40
8	Изменение t_s после 5000 циклов ручного открытия-закрытия	°C	1.3	не более 2
9	Изменение $g_m N$ после 5000 циклов ручного открытия-закрытия	%	14	не более 20
10	Изменение t _s после испытаний на температурную устойчивость (5000 циклов попеременного погружения в воду 15 °C и 25 °C)	°C	1.5	не более 2
11	Изменение g _m N после испытаний на температурную устойчивость (5000 циклов попеременного погружения в воду 15 °C и 25 °C)	%	12	не более 20
12	Изменение t_s после испытаний на сопротивление температурным воздействиям (-20 °C -6 ч.,+50 °C-6 ч.,+40 °C-6ч;+20 °C-24 ч.)	°C	1.4	не более 1.5
13	Изменение t_s после испытаний на сопротивление температурным воздействиям (-20 °C -6 ч.,+50 °C-6 ч.,+40 °C-6ч;+20 °C-24 ч.)	%	10	не более 20

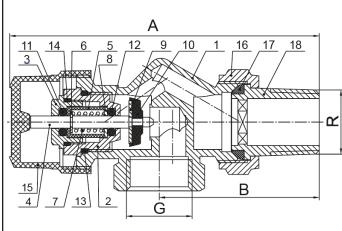
5. КОНСТРУКЦИЯ


5.1 Термоголовка

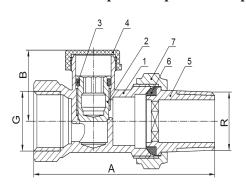
- 1 гайка накидная, латунь CW614N с никелированием поверхностей;
- 2 камера термостата, сталь оцинкованная;
- 3 фланец ограничительный с указателем, акрилобутадиенстирол -ABS;
- 4 патрон, акрилобутадиенстирол ABS;
- 5 рабочая пружина, сталь конструкционная 66Мn4;
- 6 маховик, акрилобутадиенстирол ABS;
- 7 сильфон, латунь CW614N;
- 8 шток, нейлон армированный стекловолокном;
- 9 ограничитель, акрилобутадиенстирол ABS;
- 10 корпус демпферной камеры, нейлон армированный стекловолокном;
- 11 вставка упорная, сталь;
- 12 демпферная пружина, сталь конструкционная 66Мn4;



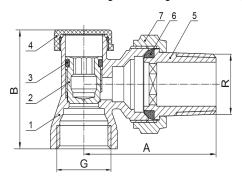
5.2 Термостатический клапан прямой с кольцевым уплотнением штуцера


- 1 корпус, латунь CW617N
- 2 корпус буксы клапана, латунь CW617N
- 3 втулка буксы клапана, латунь CW617N
- 4 шток н/ж сталь AISI304
- 5 колпак, латунь CW617N
- 6 шайба стопорная разрезная, латунь CW617N
- 7 пружина, н/ж сталь AISI303
- 8 шайба, латунь CW617N
- 9 тарелка клапана, латунь CW617N
- 10 уплотнитель клапана, EPDM
- 11, 12, 13, 14, 17, 20 уплотнительные кольца, EPDM
- 15 колпачок ручной регулировки
- 16 накидная гайка, латунь CW617N
- 18 штуцер присоединительный, латунь CW617N
- 19 кольцо упорное, EPDM

5.3 Термостатический клапан угловой с кольцевым уплотнением штуцера


- 1 корпус, латунь CW617N
- 2 корпус буксы клапана, латунь CW617N
- 3 втулка буксы клапана, латунь CW617N
- 4 шток н/ж сталь AISI304
- 5 колпак, латунь CW617N
- 6 шайба стопорная разрезная, латунь CW617N
- 7 пружина, н/ж сталь AISI303
- 8 шайба, латунь CW617N
- 9 тарелка клапана, латунь CW617N
- 10 уплотнитель клапана, EPDM
- 11, 12, 13, 14, 17, 20 уплотнительные кольца, ЕРОМ
- 15 колпачок ручной регулировки
- 16 накидная гайка, латунь CW617N
- 18 штуцер присоединительный, латунь CW617N
- 19 кольцо упорное, EPDM

5.4 Термостатический клапан угловой с осевым управлением


- 1 корпус, латунь CW617N
- 2 корпус буксы клапана, латунь CW617N
- 3 втулка буксы клапана, латунь CW617N
- 4 шток н/ж сталь AISI304
- 5 колпак, латунь CW617N
- 6 шайба стопорная разрезная, латунь CW617N
- 7 пружина, н/ж сталь AISI303
- 8 шайба, латунь CW617N
- 9 тарелка клапана, латунь CW617N
- 10 уплотнитель клапана, ЕРОМ
- 11, 12, 13, 14, 17 уплотнительные кольца, ЕРОМ
- 15 колпачок ручной регулировки
- 16 накидная гайка, латунь CW617N
- 18 штуцер присоединительный, латунь CW617N

5.5 Клапан радиаторный настроечный, угловой

- 1 корпус, латунь CW617N
- 2 регулировочный конус, латунь CW617N
- 3 уплотнительное кольцо, ЕРОМ
- 4 колпачок, ABS
- 5 штуцер присоединительный, латунь CW617N
- 6 уплотнительное кольцо, EPDM
- 7 накидная гайка, латунь CW617N

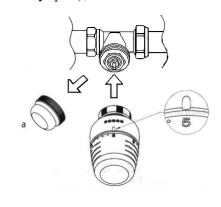
5.6 Клапан радиаторный настроечный, прямой

- 1 корпус, латунь CW617N
- 2 регулировочный конус, латунь CW617N
- 3 уплотнительное кольцо, ЕРОМ
- 4 колпачок, ABS
- 5 штуцер присоединительный, латунь CW617N
- 6 уплотнительное кольцо, EPDM
- 7 накидная гайка, латунь CW617N

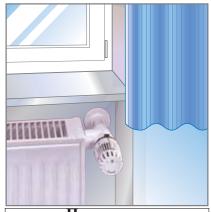
6. ПРИНЦИП РАБОТЫ

Основным устройством термостатического элемента является сильфон, обеспечивающий пропорциональное регулирование. Камера термостата воспринимает изменение температуры окружающей ее среды. При повышении температуры воздуха вокруг термостатической камеры жидкость в ней расширяется, давление внутри увеличивается и воздействует на сильфон, сжимая его. Сжимаясь, сильфон толкает шток (8) вместе с демпферной камерой вниз, преодолевая сопротивление рабочей пружины (5) и пружины термостатического клапана, на котором установлена термоголовка, тем самым уменьшая подачу теплоносителя в прибор отопления. Маховик (6) позволяет производить предварительную настройку температуры.

7. УКАЗАНИЯ ПО МОНТАЖУ И НАСТРОЙКЕ

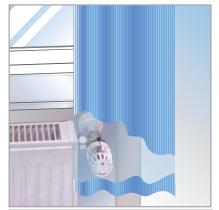

7.1 Установка и настройка термостатической головки.

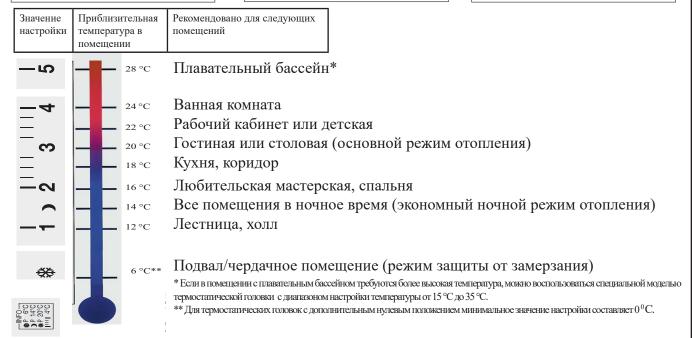
Установка термостатической головки на клапан выполняется в следующем порядке:


- снять головку ручной регулировки (а) с термостатического клапана;
- выставить на термостатической головке значение настройки «5» (шток убран);
- надеть термостатическую головку на клапан и зафиксировать ее накидной гайкой головки, завернув ее до упора;
- повернуть головку в положение, удобное для ручной регулировки;
- установить на термоголовке позицию шкалы, соответствующую выбранному температурному режиму в помещении.

При установке термоголовки следует соблюдать следующие правила:

- нельзя устанавливать термоголовку в зоне прямого воздействия конвективных тепловых потоков радиатора или подводящего трубопровода;
- корректная работа термоголовки невозможна в случае закрытия ее экраном или шторой;
- термоголовка не должна попадать в зону воздействия прямых солнечных лучей.




Правильно
Термостатическая головка
беспрепятственно омывается
воздухом, циркулирующим в
помещении.

Неправильно
Термостатическая головка со
встроенным датчиком не
должна устанавливаться вертикально.

Неправильно
Термостатическая головка со
встроенным датчиком не
должна закрываться шторами.

- 7.2. Величины температуры, соответствующие меткам на шкале, являются ориентировочными, так как фактическая температура воздуха в помещении может отличаться от температуры, окружающей термостатический элемент среды и зависит от условий его размещения.
- 7.3. Установка требуемого значения температуры осуществляется с помощью поворота маховика (6) до совмещения указателя ограничительного фланца (3) с требуемым значением на шкале маховика. При вращении маховика против часовой стрелки температура повышается, при вращении по часовой стрелке понижается.
- 7.4. Рекомендуется использовать позицию настройки «3», соответствующую основному режиму отопления, при котором температура воздуха в помещении составляет примерно 20°С.
- 7.5. Клапаны должны монтироваться таким образом, чтобы на него не передавались продольные, поперечные усилия и моменты от трубопровода.
- 7.6. При использовании термоголовки или сервопривода, колпачок ручной регулировки с клапана должен быть снят.
- 7.7. Направление потока теплоносителя должно совпадать с направлением стрелки на корпусе клапана.

- 7.8. Терморегулятор устанавливается на входе теплоносителя в нагревательный прибор, а настроечный клапан на выходе из прибора.
- 7.9. Использование при монтаже клапанов рычажных ключей не допускается.
- 7.10. Клапаны могут устанавливаться в любом монтажном положении. Клапаны терморегуляторов следует размещать так, чтобы тепловые потоки от радиатора или труб не воздействовали на термоголовку.
- 7.11. Муфтовые соединения должны выполнять с использованием в качестве уплотнительных материалов ФУМ (фторопластовый уплотнительный материал) или полиамидной сантехнической нити.
- 7.12. При монтаже клапана первым к трубопроводу или прибору присоединяется патрубок полусгона. Перед монтажом полусгона необходимо удостовериться в наличии и целостности резинового уплотнительного кольца. Использование дополнительного уплотнительного материала при монтаже полусгона не требуется.
- 7.13. Монтаж патрубка полусгона производится с помощью специального сгонного ключа. Накидную гайку полусгона после затяжки вручную следует довернуть ключом не более, чем на $\frac{1}{2}$ оборота.
- 7.14. При монтаже клапанов не допускается превышать крутящие моменты, указанные в таблице:

Резьба, дюймы	Момент, Нм
Предельный крутящий момент (резьба)	30
Предельный крутящий момент (накидная гайка)	25
Предельный крутящий момент (патрубок полусгона)	28

- 7.15. Настроечный клапан регулируется с помощью шестигранного ключа S8. Проектная пропускная способность достигается открыванием клапана от полного закрытия на требуемое количество оборотов (см. таблицу технических характеристик).
- 7.16. После монтажной настройки настроечного клапана он закрывается защитной латунной заглушкой с прокладкой из безасбестового паронита.
- 7.17. Перед запуском в эксплуатацию система отопления должна быть подвергнута гидравлическим испытаниям давлением в 1,5 раза превышающем рабочее, но не менее 6 бар. Испытания проводятся в порядке, изложенном в СП73.13330.2016.

8. УКАЗАНИЯ ПО ЭКСПЛУАТАЦИИ И ТЕХНИЧЕСКОМУ ОБСЛУЖИВАНИЮ

- 8.1. Комплекты должны эксплуатироваться при условиях, изложенных в таблице технических характеристик.
- 8.2. При установке клапанов на отопительные приборы в однотрубных системах отопления, перед ними обязательно должен устраиваться обводной участок (байпас). Установка запорной и регулирующей арматуры на байпасе не допускается.
- 8.3. Разборка термоголовки не допускается.
- 8.4. Закрытие термоголовки сухой или влажной ветошью, а также неполное закручивание накидной гайки приведет к некорректной работе терморегулятора.
- 8.5. Не допускайте попадание в корпус термоголовки мусора и насекомых.
- 8.6. Корпус термоголовки необходимо периодически чистить от пыли. При этом не допускается использовать химические растворители и абразивные материалы.
- 8.7. При использовании в качестве теплоносителя незамерзающих жидкостей при температуре воздуха ниже +3°C термоголовку необходимо снять с клапана терморегулиторовки.
- 8.8. Не допускается замерзание рабочей среды внутри клапанов.

9. УСЛОВИЯ ХРАНЕНИЯ И ТРАНСПОРТИРОВКИ.

Изделия должны храниться в упаковке предприятия—изготовителя по условиям хранения 3 по ГОСТ 15150. Транспортировка изделий должна осуществляться в соответствии с условиями 5 по ГОСТ 15150.

10. УТИЛИЗАЦИЯ.

Утилизация изделия (переплавка, захоронение, перепродажа) производится в порядке, установленном Законами РФ от 22 августа 2004 г. № 122-ФЗ «Об охране атмосферного воздуха», от 10 января 2003 г. № 15-ФЗ «Об отходах производства и потребления», а также другими российскими и региональными нормами, актами, правилами, распоряжениями и пр., принятыми во исполнение указанных законов.

11. ГАРАНТИЙНЫЕ ОБЯЗАТЕЛЬСТВА.

Изготовитель гарантирует соответствие устройства требованиям безопасности, при условии соблюдения потребителем правил использования, транспортировки, хранения, монтажа и эксплуатации.

Гарантия распространяется на все дефекты, возникшие по вине завода- изготовителя.

Гарантия не распространяется на дефекты:

- возникшие в случаях нарушения правил, изложенных в настоящем паспорте об условиях хранения, монтажа, эксплуатации и обслуживания изделий;
- возникшие в случае ненадлежащей транспортировки и погрузо-разгрузочных работ;
- возникшие в случае воздействия веществ, агрессивных к материалам изделия;
- вызванные пожаром, стихией, форс-мажорными обстоятельствами;
- вызванные неправильными действиями потребителя;
- возникшие в случае постороннего вмешательства в конструкцию изделия;производитель не несет ответственность за материальный ущерб и травмы, возникшие в результате неправильного монтажа и эксплуатации.

12. УСЛОВИЯ ГАРАНТИЙНОГО ОБСЛУЖИВАНИЯ.

- 12.1. Претензии к качеству товара могут быть предъявлены в течение гарантийного срока.
- 12.2. Неисправные изделия в течение гарантийного срока ремонтируются или обмениваются на новые бесплатно. Потребитель также имеет право на возврат уплаченных за некачественный товар денежных средств или на соразмерное уменьшение его цены. В случае замены, замененное изделие или его части, полученные в результате ремонта, переходят в собственность сервисного центра.
- 12.3. Решение о возмещении затрат Потребителю, связанных с демонтажом, монтажом и транспортировкой неисправного изделия в период гарантийного срока принимается по результатам экспертного заключения, в том случае, если товар признан ненадлежащего качества.
- 12.4. В случае, если результаты экспертизы покажут, что недостатки товара возникли вследствие обстоятельств, за которые не отвечает изготовитель, затраты на экспертизу изделия оплачиваются Потребителем.
- 12.5.Изделия принимаются в гарантийный ремонт (а также при возврате) полностью укомплектованными.
- 12.6. При предъявлении претензий к качеству товара, покупатель предоставляет следующие документы:
- 1. Заявление в произвольной форме, в котором указываются:
 - название организации или Ф.И.О. покупателя;
 - контактный телефон;
 - название и адрес организации, производившей монтаж;
 - краткое описание дефекта.
 - 2. Документ, подтверждающий покупку изделия (накладная, квитанция);
 - 3. Копия гарантийного талона со всеми заполненными графами.

ГАРАНТИЙНЫЙ ТАЛОН

Сведения о приемке и упаковке

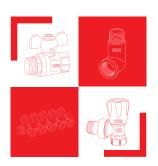
Изделие изготовлено и принято в соответствии с требованиями технических условий производителя и признано годным к эксплуатации. Изделие упаковано согласно требованиям технических условий производителя.

изводителя.		•		
Изделие	комплект терморегулирующий			
Модель	Кол-во			
Торговая организ	ация:		•	
Дата продажи:				
Для обращения в гарант гарантийный талон.	ийную мастерскую необход	имо предъявить и	зделие и пр	авильно заполненный
	ция, уполномоченная на г ИНН 7724433227, 115583			-
Мы постоянно заботимся	ет (восемьдесят четыре ме я об улучшении качества обс качество товара или требуе кбу поддержки:	луживания наши	х потребите	лей, поэтому, если у Вас
	985-490-77-00 с 9:00 до 18:0 ничивает право покупателя			

жи, а также не ограничивает законные права потребителей.
Изделие получено в исправном состоянии и полностью укомплектовано.

- Претензий к внешнему виду не имею.
- С условиями проведения гарантийного обслуживания ознакомлен.

Подпись покупателя	
	МΠ



ГАРАНТИЙНЫЕ ОБЯЗАТЕЛЬСТВА:
ГАРАНТИЙНЫЙ СРОК - 7 ЛЕТ
(ВОСЕМЬДЕСЯТ ЧЕТЫРЕ МЕСЯЦА)
С ДАТЫ ПРОДАЖИ КОНЕЧНОМУ ПОТРЕБИТЕЛЮ.
ПО ВОПРОСАМ ГАРАНТИИ ОБРАЩАТЬСЯ:

по телефону Россия: 8 (800) 775-81-91 WhatsApp: 8-985-490-77-00

с 9:00 до 18:00 по Московскому времени.

